Adsorption of Multi-block and Random Copolymer on a Solid Surface: Critical Behavior and Phase Diagram

نویسندگان

  • S. Bhattacharya
  • T. A. Vilgis
چکیده

The adsorption of a single multi-block AB-copolymer on a solid planar substrate is investigated by means of computer simulations and scaling analysis. It is shown that the problem can be mapped onto an effective homopolymer adsorption problem. In particular we discuss how the critical adsorption energy and the fraction of adsorbed monomers depend on the block length M of sticking monomers A, and on the total length N of the polymer chains. Also the adsorption of the random copolymers is considered and found to be well described within the framework of the annealed approximation. For a better test of our theoretical prediction, two different Monte Carlo (MC) simulation methods were employed: a) off-lattice dynamic bead-spring model, based on the standard Metropolis algorithm (MA), and b) coarse-grained lattice model using the Pruned-enriched Rosenbluth method (PERM) which enables tests for very long chains. The findings of both methods are fully consistent and in good agreement with theoretical predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and properties of multivariant assemblies of surface-tethered diblock and triblock copolymers

We present methodologies for fabricating block copolymer assemblies grafted onto flat solid substrates, where each block of the copolymer possesses a systematic and gradual variation of molecular weight as a function of the position on the substrate. We demonstrate the utility of this technique on two case studies. In the first project, we generate surface-tethered poly[(2-hydroxyethyl methacry...

متن کامل

Preparation of modified magnetic nanoparticles for in vitro delivery of ceftriaxone

In this research, a novel method is reported for the surface grafting of n-vinylcaprolactam as a thermosensitive agent and 3-allyloxy-1,2-propandiol with an affinity toward ceftriaxone onto modified magnetic nanoparticles by 3-mercaptopropyltrimethoxysilane. The grafted nanoparticles were characterized by Fourier Transform Infrared Spectroscopy, Elemental Analysis, and Vibrating Sample Magnetom...

متن کامل

Surface and smectic layering transitions in binary mixtures of parallel hard rods.

The surface phase behavior of binary mixtures of colloidal hard rods in contact with a solid substrate (hard wall) is studied, with special emphasis on the region of the phase diagram that includes the smectic A phase. The colloidal rods are modeled as hard cylinders of the same diameter and different lengths, in the approximation of perfect alignment. A fundamental-measure density functional i...

متن کامل

Biomimetic monolayer and bilayer membranes made from amphiphilic block copolymer micelles.

The deposition of amphiphilic poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) copolymer micelles is demonstrated on solid substrates. Depending upon surface chemistry, micelle adsorption creates either monolayer or bilayer films. Lateral diffusion measurements reveal that strong coupling between hydrophilic surfaces and PEO blocks creates immobile bilayers, while monolayers retain the fl...

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008